Sialidase, N-terminal domain | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | Sialidase | ||||||||
Pfam | PF02973 | ||||||||
InterPro | IPR004124 | ||||||||
SCOP | 1sli | ||||||||
CAZy | GH33 | ||||||||
|
In molecular biology, glycoside hydrolase family 33 is a family of glycoside hydrolases.
Glycoside hydrolases EC 3.2.1. are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A classification system for glycoside hydrolases, based on sequence similarity, has led to the definition of >100 different families.[1][2][3] This classification is available on the CAZy(http://www.cazy.org/GH1.html) web site,[4] and also discussed at CAZypedia, an online encyclopedia of carbohydrate active enzymes. [5]
This family contains sialidases (CAZY GH_33), which hydrolyse alpha-(2->3)-, alpha-(2->6)-, alpha-(2->8)-glycosidic linkages of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid and synthetic substrates. Sialidases may act as pathogenic factors in microbial infections.[6] The 1.8 A structure of trans-sialidase from leech (Macrobdella decora, Q27701) in complex with 2-deoxy-2, 3-didehydro-NeuAc was solved. The refined model comprising residues 81-769 has a catalytic beta-propeller domain, a N-terminal lectin-like domain and an irregular beta-stranded domain inserted into the catalytic domain.[7]